I. Definition, Assessment, Diagnosis
 a. Definition.
 i. A Deep Vein Thrombosis (DVT) is a blood clot located in one or more of
 the deep veins of an extremity. It is one of the major complications in the
 acute phase of a spinal cord injury (SCI) that can lead to a pulmonary
 embolism (PE), death or chronic thrombophlebitis and swelling.
 ii. The frequency of DVT and PE without prophylaxis based on clinical
 diagnosis alone is in the 12-64% range. In a prospective study conducted
 within 3 weeks of admission to the hospital with serial plethsmography or
 contrast venography 21 (81%) of 26 patients with acute SCI, who did not
 get prophylaxis, had a DVT.
 iii. Despite the recent advancements in managing the risk of DVT, SCI
 patients treated with appropriate prophylaxis in the acute phase of a
 traumatic injury have a mortality rate of 9.7% due to a PE during the first
 year after a SCI.
 iv. The cause of DVT in a SCI is multifactorial, but are associated with
 Virchow’s triad: Venous Stasis, endothelial Integrity and
 hypercoagulability.
 1. Venous Stasis
 a. Immobility - a 10-fold increase in the DVT risk of a paretic
 leg in stroke compared with the nonparetic leg.
 b. a loss of sympathetic input to vasoconstrict blood vessels.
 c. an increase in venous flow resistance.
 d. anticoagulation alone may not be enough and multiple
 mechanical methods of VTE prophylaxis are advocated.
2. **Endothelial Integrity**

a. decreased fibrinolytic reactivity (which is closely related to endothelial integrity),

b. increased D-dimer,

c. impaired rhythmical circadian variations in fibrinolytic parameters possibly secondary to a deregulated autonomic nervous system. 4,6

d. decrease in fibrinolysis may explain the increased proximal migration of DVTs 6, persistence and recurrence of VTEs despite adequate anticoagulation 7 and low rates of venous recanalization in the SCI population. 8

3. **Hypercoagulability**

a. Documented changes to coagulation include an increase in:

 i. platelets, factor VIII, vWF, platelet aggregation
 (returns to normal in later stages of injury),
 fibrinogen, euglobulin clot lysis time, plasma alpha-1 antitrypsin activity, and antigen concentration. 4,6

b. The following are decreased:

 i. plasma alpha-2 antiplasmin antigen concentration
 and total antiplasmin activity.

c. the pathophysiology has not been fully determined, but many of them are felt to be related to neurohormonal factors induced by the SCI. 4,6

 v. Risk factors:

 1. Bed rest (venous stasis)
 2. Tobacco smoking (hypercoagulability)
 3. COPD during acute Exacerbation (venous stasis, hypercoagulability)
 4. Surgery (esp. TKA (2.4%) and THA (3.4%))
 5. Trauma (vessel injury)
 6. Cancer (hypercoagulability)
7. Pregnancy (venous stasis)
8. Obesity (venous stasis)
9. Estrogen treatment (hypercoagulability)
10. Hx of DVT (all 3)
11. Anticardiolypin antibodies (hypercoagulability)
12. Factor V Leiden Mutation (hypercoagulability)
 i. m) Protein C and Protein S deficiency (hypercoagulability)
 ii. n) Antithrombin III deficiency (hypercoagulability)
vi. Risk factors that are additive to SCI risks:
 1. Advanced age
 2. Male gender
 3. Level of injury (paraplegia vs tetraplegia)
 4. Completeness of injury (motor complete vs motor incomplete)
 5. History of thrombosis
 6. Lower extremity fracture
 7. Dehydration
 8. Flaccid paralysis
 9. Obesity
 10. Delayed thromboprophylaxis
 11. Estrogen therapy
 12. Pregnancy
 13. Heterotopic ossification
14. Various comorbidities: cancer, congestive heart failure, chronic obstructive pulmonary disease, and diabetes mellitus

b. Assessment
 i. Signs and Symptoms:

 1. Unexplained Fever

 2. Unilateral leg pain or erythema

 3. Sudden onset of hypotension, tachycardia, chest pain, arrhythmia or hypotension

 4. Unilateral leg swelling
ii. Rule out other causes of symptoms
 a. Vascular System
 i. Hematoma
 b. Infectious
 i. Cellulitis
 ii. Osteomyelitis
 c. Oncologic
 i. Osteosarcoma
 ii. Osteochondroma
 d. Orthopedic
 i. Heterotopic ossification
 ii. Fracture

c. Diagnosis
 i. Diagnosis of DVT:
 a. Clinical diagnostic signs are: leg swelling difference of 2-3 cm in diameter; + Homan’s sign – pain with dorsiflexion of the foot (SCI sensation impaired)
 b. Elevated d-dimer, sensitive but not specific and elevated with acute inflammation due to surgery, trauma and UTI
 c. Venous duplex Doppler ultrasound is clinical choice but relatively low sensitivity for proximal imaging (29%) and for both proximal and distal imaging (18.2%) in patients in the acute stage after SCI is a concern.
 d. Contrast venography of the lower limbs is considered the gold standard for diagnosis of DVT, but its invasive nature, potential complications, technical issues, and costs preclude its routine use.
 e. CT or MR venography could overcome the limitations of the ultrasonographic diagnosis of DVT, but technical refinement is required prior to their use in clinical practice.
 f. Impedance plethysmography can be used to diagnose DVT by detecting increased venous outflow resistance in the deep veins of the lower limbs, but its use has been discontinued in many centers due to its relatively low sensitivity for detecting proximal-vein DVT (66%).
g. Nuclear medicine techniques such as \(^{111}\text{In}\)-labeled platelet scintigraphy, \(^{99m}\text{Tc}\)-labeled platelet glycoprotein IIb/IIIa receptor antagonist, and \(^{125}\text{I}\)-labeled fibrinogen are not currently used in clinical practice because they are costly and are not advantageous in terms of accuracy in comparison with other diagnostic tests. \(^{10}\)

h. In a systematic review, Goodacre and colleagues \(^{11}\) studied the diagnostic role of noninvasive tests for proximal DVT and isolated calf DVT in patients with clinically suspected DVT and in high-risk asymptomatic patients (i.e. SCI). The authors concluded the most cost-effective diagnostic strategies were:

i. Wells prediction score,

ii. D-dimer test, and

iii. Ultrasonography

ii. Diagnosis of PE:

a. Most common symptoms: Dyspnea, Pleurisy, Cough, hemoptysis

b. Simplified Wells Score

 i. Clinical signs of DVT

 ii. Heart rate > 100 beats/min

 iii. Recent surgery or immobilization

 iv. Previous PE or DVT

 v. Hemoptysis

 vi. Cancer

 vii. Alternative diagnosis less likely than PE

c. Computed Tomography pulmonary angiography

d. Ventilation/perfusion (V/Q) scanning
II. Management and Treatment Recommendations
 a. Management/treatment recommendations
 i. DVT treatment:
 a. There is level 4 evidence that enoxaparin, administered
 subcutaneously, is safe, cost-effective, and less labor-
 intensive than intravenous heparin for acute DVTs post-
 SCI.
 b. New oral anticoagulants rivaroxaban (Xarelto), dabigatran
 (Pradaxa), and apixaban (Eliquis) all appear to be effective
 and safe, but data in older and sicker patients are limited.
 ii. PE Treatment:
 a. Thrombolytic therapy if PE with severe cardiopulmonary
 compromise
 i. Lower rate of all cause mortality (OR 0.53)
 ii. Greater risks of major bleeding (OR 2.73) and ICH
 (OR 4.63)
 iii. Bleeding risk less if patient ≤ 65 (OR 1.25)
 b. Low-molecular weight heparin
 c. Warfarin
b. Restrictions:

i. Early mobilization and passive exercise should be initiated ASAP once the
 patient is medically and surgically stable.

ii. If documented DVT, mobilization and exercise of the lower extremities
 should be withheld 48 to 72 hours until appropriate medical therapy is
 implemented.16

iii. Heparin Induced Thrombocytopenia is an immune-mediated reaction to
 UFH and LMWH. Incidence 5\% of post-surgical patients and 0.6\% of
 non-surgical patients exposed to heparin. Decreased risk with LMWH
 noted in one hospital study.17

iv. Drop in platelet count of 30-50\% within 5-10 days of heparin exposure or
 in 1-2 days after re-exposure. \~10\% can be above 150K.

v. Hyper-coagulable condition associated with a 5\% per day risk of
 thrombosis. Thrombosis in up to 60\% of patients and can precede
 thrombocytopenia.

vi. Stop Heparin, start argatroban (IV) or possibly fondaparinux(sq). 30 days
 of anticoagulation if no thrombosis or 3 months if associated with
 thrombosis.

c. Major outcomes:

i. Risk of recurrent venous thromboembolism was higher with UFH-Vitamin
 K antagonist combination compared to LMWH – Vitamin K antagonist
 combination 1.42 Hazard Ratio14

 a. UFH – Vitamin K antagonist combination 1.84\%

 b. LMWH – Vitamin K antagonist combination 1.30\%

ii. Major bleeding events during 3 months of anticoagulation

 a. LMHW – Vitamin K antagonist combination 0.89\%

 b. Rivaroxaban (direct Factor Xa inhibitor) 0.49\%

 c. Apixaban (direct Factor Xa inhibitor) 0.28\%
III. Prevention and Education

a. Compression hose or pneumatic devices should be applied to the legs of all SCI patients for the first 2 weeks:
 i. Knee or thigh length.
 ii. Single or sequential chamber compression
 iii. Effectiveness enhanced in combination with other antithrombotic agents

b. In patients whose thrombo-prophylaxis has been delayed > 72 hours, testing to exclude DVT should be performed prior to applying compression devices.

c. Active and Passive ROM
d. Elevation of legs
e. Gradient elastic stockings (TED)
f. Electrical Stimulation
g. External Pneumatic compression devices
 i. Thigh and calf
 ii. Calf
 iii. Foot only

h. IVC filter indicated for the following reasons: (note: not a substitute for thromboprophylaxis) 16
 i. Failed anticoagulant prophylaxis
 ii. Contraindication to anticoagulation (active or potential bleeding sites)
 iii. Complete motor paralysis due to lesions in the high cervical cord (C2, C3) with poor cardiopulmonary reserve, or with thrombus in IVC despite adequate anticoagulation.
 iv. Shown to decrease the risk of PE acutely (1.1% vs 4.8%) but increase the risk of recurrent DVT at two years (20.8% vs 11.6%) No difference in Mortality rate (2.5%). 18

 i. Use either LMWH or adjusted dose unfractionated heparin within 72 hours after SCI, if no active bleeding, evidence of TBI, or coagulopathy. Continue until discharge with incomplete injury, for 8 weeks in uncomplicated complete SCI, and for 12 weeks with complete SCI with other risk factors.

j. DVT prophylaxis should be instituted within 72 h post injury. (Single study but large difference; therefore suggest strong recommendation with weak data.)

k. LMWH should be held on the morning of surgery and resumed within 24 h following surgery. (Balance of risks and benefits; strong recommendation, weak data.) 19

l. Reinstitution of DVT Prophylaxis:
i. Chronic SCI if they are immobilized with bed rest for a prolonged period of time.
ii. Readmitted for medical illness or altered medical condition.
iii. Undergoing surgical procedures.

m. Education: Patients, family members and significant others should be educated to take prevent measures and to recognize DVTs.

This guideline was developed to improve health care access in Arkansas and to aid health care providers in making decisions about appropriate patient care. The needs of the individual patient, resources available, and limitations unique to the institution or type of practice may warrant variations.

Guideline Developers
Guideline developed by Thomas S. Kiser, MD, in collaboration with the TRIUMPH team led by Thomas S. Kiser, MD, and Rani H Lindberg, MD.

Selected References

